DSN Progress Report 42-46

May and June 1978

Absolute Flux Density Calibrations:
Receiver Saturation Effects
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The effect of receiver saturation is examined for a total power radiometer which uses
an ambient load for calibration. Extension to other calibration schemes is indicated. The
analysis shows that a monotonic receiver saturation characteristic could cause either
positive or negative measurement errors, with polarity depending upon operating
conditions. A realistic model of the receiver is made using a linear-cubic voltage transfer
characteristic. The evaluation of measurement error for this model then provides a means
Jor correcting radio source measurements. It also provides the means for assuring that this

source of error is small in a particular situation.

l. Introduction

The Jet Propulsion Laboratory’s Antenna Gain Calibration
Program has demonstrated the feasibility of accurately deter-
mining the gain performance of large aperture antennas using
radio metric measurements of natural radio sources (Ref. 1).
One phase of this program examined systematic errors and
their effects on the radio metric measurements. The measure-
ment of low system operating temperature and ambient noise
reference temperature demands operation of the radiometer
receiving system over a fairly large dynamic range. This
necessitated examination of receiver saturation. The saturation
may be small, but it can have impact on radio source
temperature measurements at the 1% error level.

Ipy. Ohlson, a consuiltant to Section 333, is a Professor at the U.S.
Naval Postgraduate School, Monterey, CA.

Consider a classical total power radiometer which goes
through the sequence shown in Table 1. The parameters shown
are defined as

TOp = System operating noise temperature (cold
sky).
T, = Increase in system operating noise tempera-

ture due to radio source.

T AMB — System operating noise temperature when
terminated in an ambient load.

G = System power gain through the receiver.
This value is assumed to only be known
nominally prior to use of T,y as a
reference.

1+ P, Py = Output powers of an ideal linear receiver as
indicated by an ideal detector.
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P, P,, P, = Observed output powers of a real receiver as

. indicated by an ideal detector.

First, consider an ideal linear receiver. Step 1 (Table 1)
gives us GT,, when the antenna is pointed slightly away from
the source. Step 2 gives us G(T,, + T,) when on source.
Step 3 gives us a calibration value of G7T ,pg. The value of
Toymp is known from physical temperature measurement of
the load and other RF hardware calculations. Using a prime to
denote estimated values, the estimated gain factor is

. 3
G = (1)
T pns

However, since we are starting by assuming a linear receiver,
we have Py = GT,yp and thus G'=G. Then the estimated
value of T’ is measured in the classical manner as

T = (2)
and we clearly obtain T, =T .

Il. Real Receiver Analysis

Let the real receiver be described by the compression
factors C;, C, and C; which have values between O and 1.
These represent the reduction of receiver output due to
saturation so that (see Table 1)

P, = C,P <P (3)
P, = C,P, <P, (4)
P, = C,P, <P, (5)

We assume that the saturation is not in the detector, but in the
intermediate frequency (IF) amplifier prior to the detector. To
insure that this is the case, most accurate radiometers use a
very accurate adjustable caiibrated IF attenuator prior to the
detector. The detector is used simply as an indicator and the
IF attenuator is adjusted so the indicator is returned to a
standard reading. This technique eliminates nonlinearity error
in the detector because the detector always operates at the
same level for each measurement step. The data is then the
difference of the attenuation readings from the attenuator
dial, for Steps 1, 2 and 3 in Table 1.
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From (1) with P substituted for P; the measurement of
gain for the real receiver is

G' = =C.G (6)

Then from (2) and (6), with P, > P, P, =P, and G > G, we
have the measurement of source temperature as

P-P C C, -C,)
Tr - 2 1 — _2T _ 1 2 T (7)
s G’ C s C op

3 3

Ty ®

C (c -C)
2 )T— 12y
N
3

Observe that C,, C, and C, are specific values of the
function C(GTyy) where Ty is total system temperature, i.e.,

C, = C(GT, )
C, = ClG(T,, +T)] )
Cy = C(6T, )

We now define a monotonic compression characteristic for a
receiver as one for which C(x) is monotonically decreasing
with x. Thus, if for example

<T +T <T (10)

op op s

then if a receiver had monotonic compression, it would have

1=2C

>C, 20 >0 (11)

ie., €] has less compression and is closer to unity.

The first conclusion will now be made. The error in (8) can
be positive or negative. To show this consider two special
cases, satisfying (10) and (11).

(}) Let T,, + Ty =Tppp- Then ¢ = C; and from (8) AT
is negative since C; > C,.



(2) Assume compression occurs only for Ty yyg. Then 1 =
C, =C, > (€3> 0and from (8) AT is positive.

For any radiometer we will usually have T, < T, yp.
Assuming T, is less than Ty \p, two operating conditions
exist. One condition is in (10). It and the other one possible
are tabulated in Table 2. The error of the first was shown to
possibly be positive or negative. For the second in Table 2, the
error is always negative, under the monotonic assumption in
(11). The breakpoint between positive and negative errors is
difficult to find by simply setting (8) equal to zero, since we
have not yet developed an analytic function for (9). The main
result of this section is in (8). This is useful when the
compression factors are known because we can then calculate
the measurement error AT.

lll. Modeling of Compression

The result above is useful only when C;, C, and Cj5 are
each known. This is usually not the case. Usually a radi-
ometer user knows only that he is operating some amount
(backoff) below a reference compression point, e.g., the
-0.1 dB point. In this section we consider a linear-cubic
model and can calculate the measurement error when given
only the backoff value.

The voltage input-output relationship of an amplifier is
often modeled with the linear-cubic model?:

— 5,3
Vout = Yin = Vin (12)

This model is widely used for intermodulation product cal-
culation, and seems appropriate here as well. We assume a
bandpass filter to follow the amplifier prior to the detector.
Thus, second and fourth order terms could be included in
(12) but their output would be rejected by the filter and
have no effect. The gain is unity for small v, . Saturation
increases for larger v; . We assume that we will operate far
below the point at which (12) has its maximum value and
starts decreasing for very large vy,.

2A more general form for a real amplifier which incorporates a gain
parameter « and a saturation parameter g is

Vout = ®¥in = Frin

With no loss of generality in what is to follow, « and g8 can be taken
to be unity as in (12).

An amplifier is usually characterized for sine wave inputs
and outputs. Let v;, = A cos wt, where w is the IF center
frequency. Substitution of this in (12), and manipulation
gives

B 343 A’ :
Vout = [A - (—4— )] cos wi = - cos 3wt (13)

The second term is rejected by the bandpass filter so the
envelope voltage amplitude of the output sine wave is

e = A- — (14)

We now choose a standard reference compression point, C,.
Commonly, this is expressed in decibels so €, (in dB) =
10 log,, C,, e.g., -0.1 dB from C, = 0.97724. Since C,
is a power ratio, C}/2 then is the factor by which e in (14)
is reduced below the amplitude 4 obtained with a linear
receiver. We wish to find the input envelope 4 = 4, where

this compression occurs. Thus

3
%= 1/2
A,- =4, | (15)
and hence
A% = i(1 - 2y (16)
o 3 v

Since power comes from the envelope as A§/2, we have the
input power giving compression C, for a sine wave is

P = %(1 - C?) (17)

N

We now examine compression for a noise input. For
Gaussian noise the envelope A has the Rayleigh probability
density

p(4) = Pﬁexp (-4%/2P,), A >0 (18)
n
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where P,, = average input power of the noise. The output
envelope after the filter is in (14) so the output power
(observed by the detector) is

Po :e2/2=—2—J- (A——4‘> p(4) dA
]

27
57, (19)

— _ 2
—Pn 6Pn+ 5

The compression factor for noise C,, is implicitly defined as
P, =C,.P, to give

P
0 27 (20)

Now let the input noise power P, be below the sine wave
compression point P by the backoff B <1:

P = BP (21)
We then have, by (21), (20) and (17)
2
€, =1-4B(1- C!/?)+6B*1- C1?) (22)

We have already presumed small saturation, so C, is very
close to unity. Thus (1- C!/2) is <<1 and since B <1, the
third term in (22) is second order in B(1 - CL/2) and is
negligible with respect to the second term. Thus

~ _ L2
C,=1-4B(1- C!/?) (23)
This is the main result of this section.

An important question may now be answered. At some
reference level the compression for a sine wave input is C,.
At what backoff from this reference level will a noise input
have the same compression? We start with (23) and set C,, =
C,=C. Since B(1- C'/?) <<1, we use (1 +x)1/2 =~1+x/2
to get from (23)

c'?=1-2801-C"? (24)
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Solving for B gives B = 1/2. Thus we conclude that a noise
input must be backed off a factor of 2(= 3 dB) from a sinu-
soidal input to have the same compression. This is reasonable
since the noise input has large excursions which are com-
pressed more than a sinuscidal input.

IV. Application to Radiometer Error

In (8) we have the error in measurement of 7 in terms
of the compression factors C;, C, and Cj. In (23) we now
have an expression for these factors under the assumption of
a linear-cubic receiver model.

We first characterize the receiver for a sinusoidal input by
establishing the reference level at which a compression of C,
occurs, say -0.1 dB. This reference level can be determined
by use of a signal generator and precision attenuators. For
use as a radiometer, with a noise input, this same com-
pression occurs for a reference temperature T,. This tempera-
ture represents an input noise power reduced by a backoff
of 1/2 with respect to the reference sinusoid. Thus for total
input temperature T, backoff is given by

B = (25
From (23) we thus have

T,
c =1- 2T—"‘(1—Cj/2) (26)
¥

This gives the compression vs input temperature 73, under
the condition that a compression of C, occurs at reference
temperature 7,. Square-rooting (26) and using the argument

prior to (24) easily shows that C, =C_ when T, =T..

For simplicity, define
5 = 2(1-C/HT, (27)

Then the compression factors needed for (8) are of the form
in (9):

¢, =1-8T,,
C,=1-8(T, +T)
Cy=1-68T, (28)



Substitution into (8) gives

21 - CH?y( -2T -T)
é.T_Z o r . AMB op s (29)

Torp-20-0"T1,,,,/T]

Since (1 - Crl/z) will be small, and assuming 7', ,,p is not
much larger than 7,, we can drop the second term in the
denominator bracket to give

Toup 27T,, T

AT: ) MB op N
T 21-CH?) T (30

This is the main result of this section. In this form it can be
used to calculate correction factors for measurements.
Several observations can be made:

(1) The fractional error AT/T,, linearly decreases as T
increases.

(2) The error goes to zero when

T, = Tays~ 2T,, (31)

(3) The error is positive or negative depending upon
whether T is below or above the value in (31).

A special case is of considerable value. Let T, ,, and 7 be
very small compared to T ;5. Then

T
AVT_ - _ 12 “AMB
T 21-C.1%) T (32)
s ¥
Further, as long as
TS+2TOP<TAMB (33)

the result in (30) is bounded by (32). Thus, we obtain the
useful result which can be used to provide an upper bound
on saturation effects (condition 33 must apply):

T :
AT AMB
=K _oolj2y _AMS
Ts 2(1 Cr ) Tr (34)

V. Example

To illustrate the above calculations, consider the following
example parameters representative of a high performance
radiometer using a maser:

T =15K
op
T =100 K
s
Tyyp = 300K (35)

Let the receiver be set so that a temperature 7, = 400 K gives a
compression of -0.1 dB (C,= 0.97724). The error is, from

. (30), at the 1% level:

=2 = 0.0097 (36)

The maximum error for any T satisfying (33) with

S
T, <270, is, from (34)

VI. System Constraint for Small Error

Let us now find the constraint on the receiver com-
pression so that the system error will be small. Assume that
(33) holds and let us use the bound in (34) so that our
constraint will hold for any value of T in (33). Let us take
a value of AT/T = E\;ox as the worst case error we can
accept. Then for equality in (34) we have the tradeoff in
Tamp/T, vs C,

N
T

r

E = 2(1-C'"%)

Max ()

Examples of this tradeoff are shown in Table 3 for a value
of Eyyax = 0.003. This Table shows that -0.026 dB com-
pression at a value of 7, which is 3 dB above T, guar-
antees that AT/T is below 0.003. This is also true if there is
-0.131 dB compression when T, is 10dB above T, 5.
Clearly there is an infinite number of pairs of values satis-
fying (34). The usefulness of (34) is that only one value of
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compression need be specified and this can be done for a
nearly arbitrary value of T,.

In many radiometers, the system calibration is done by
use of a calibrated active noise source reference (gas dis-
charge tube or noise diode) which adds a precise amount of
noise to the system input. This is as opposed to the use of
an ambient load for calibration as done above. With small
changes, it is straighfforward to apply the technique above
to the case of an active reference. The key point is that
Step 3 in Table 1 now has “off source—noise reference on”
and temperature TOp + T, where T, is the calibrated noise
reference contribution. Also the gain estimate in (6) becomes

The remainder of the analysis closely follows the above and
is omitted for brevity.

VIl. Conclusions

An analysis has been made of measurement error in a
radiometer due to receiver saturation. The general result is in
(8). A linear-cubic model of receiver saturation was then
assumed and an explicit result was obtained in (30).

The measurement error is characterized by only one mea-
surement of compression which can be made at nearly any
reference temperature. The work here is useful for calculat-
ing correction factors, or at the very least, verifying that
error is insignificant for a particular situation.
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Table 1. Summary of measurement

Output power of

Step Description Temperature . . Output p0\fver of
ideal receiver real receiver
1 Off source Top P1 = GTOp 1’ = CIGTO
(cold sky) P
2 On source Top + Ts P2 = G(TOp + TS) P2 = C2G(T0p + Ts)
3 Ampbient load TAMB P3 = GTAMB P3 = C3GTAMB
Table 2. Error polarity
Condition Error, AT
Top +T <T,mp Positive/negative
Top + Ts > TAMB Negative

Table 3. Saturation tradeoff

Case TAMB/Tr Worst case compression
A 0.5 (-3.0 dB) 0.99401 (-0.026 dB)
B 0.1 (-10.0 dB) 0.97023 (~0.131 dB)
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